skip to main content


Search for: All records

Creators/Authors contains: "Carney, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We consider the use of quantum-limited mechanical force sensors to detect ultralight (sub-meV) dark matter (DM) candidates which are weakly coupled to the standard model. We show that mechanical sensors with masses around or below the milligram scale, operating around the standard quantum limit, would enable novel searches for DM with natural frequencies around the kHz scale. This would complement existing strategies based on torsion balances, atom interferometers, and atomic clock systems.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. García-Blanco, Sonia M. ; Cheben, Pavel (Ed.)
    Periodic arrays of resonant dielectric nano- or microstructures provide perfect reflection across spectral bands whose extent is controllable by design. At resonance, the array yields this result even in a single subwavelength layer fashioned as a membrane or residing on a substrate. The resonance effect, known as guided-mode resonance, is basic to modulated films that are periodic in one dimension (1D) or in two dimensions (2D). It has been known for 40 years that these remarkable effects arise as incident light couples to leaky Bloch-type waveguide modes that propagate laterally while radiating energy. Perfect reflection by periodic lattices derives from the particle assembly and not from constituent particle resonance. We show that perfect reflection is independent of lattice particle shape in the sense that it arises for all particle shapes. The resonance wavelength of the Bloch-mode-mediated zero-order reflectance is primarily controlled by the period for a given lattice. This is because the period has direct, dominant impact on the homogenized effective-medium refractive index of the lattice that controls the effective mode index experienced by the mode generating the resonance. In recent years, the field of metamaterials has blossomed with a flood of attendant publications. A significant fraction of this output is focused on reflectors with claims that local Fabry-Perot or Mie resonance causes perfect reflection with the leaky Bloch-mode viewpoint ignored. In this paper, we advance key points showing the essentiality of lateral leaky Bloch modes while laying bare the shortcomings of the local mode explanations. The state of attendant technology with related applications is summarized. The take-home message is that it is the assembly of particles that delivers all the important effects including perfect reflection. 
    more » « less
  5. García-Blanco, Sonia M. ; Cheben, Pavel (Ed.)
    We present principles of leaky-mode photonic lattices explaining key properties enabling potential device applications. The one-dimensional grating-type canonical model is rich in properties and conceptually transparent encompassing all essential attributes applicable to two-dimensional metasurfaces and periodic photonic slabs. We address the operative physical mechanisms grounded in lateral leaky Bloch mode resonance emphasizing the significant influence imparted by the periodicity and the waveguide characteristics of the lattice. The effects discussed are not explainable in terms of local Fabry-Perot or Mie resonances. In particular, herein, we summarize the band dynamics of the leaky stopband revealing principal Bragg diffraction processes responsible for band-gap size and band closure conditions. We review Bloch wave vector control of spectral characteristics in terms of distinct evanescent diffraction channels driving designated Bloch modes in the lattice. 
    more » « less
  6. We report the results of the COVID Moonshot, a fully open-science, crowdsourced, and structure-enabled drug discovery campaign targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease. We discovered a noncovalent, nonpeptidic inhibitor scaffold with lead-like properties that is differentiated from current main protease inhibitors. Our approach leveraged crowdsourcing, machine learning, exascale molecular simulations, and high-throughput structural biology and chemistry. We generated a detailed map of the structural plasticity of the SARS-CoV-2 main protease, extensive structure-activity relationships for multiple chemotypes, and a wealth of biochemical activity data. All compound designs (>18,000 designs), crystallographic data (>490 ligand-bound x-ray structures), assay data (>10,000 measurements), and synthesized molecules (>2400 compounds) for this campaign were shared rapidly and openly, creating a rich, open, and intellectual property–free knowledge base for future anticoronavirus drug discovery. 
    more » « less
    Free, publicly-accessible full text available November 10, 2024